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Abstract 
 
Normally today’s computers shouldn’t present any problems to rapidly calculate 
trigonometric or transcendental functions by any means. Developing better algorithms appears 
to be more sporty than really practical. However the growing number of embedded 
applications based on micro-controllers may ask for gain in speed and memory economy, 
since those applications are fundamentally characterized by limited resources and optimized 
designs in order to reduce costs. Thus, fast and memory economic algorithms keep playing an 
important role in this domain. 
 
The present algorithm was developed during the elaboration of Ultimate ROBOLAB, an 
extension to the ROBOLAB softwareiii , known as a powerful graphical programming 
environment for the LEGO RCX. By difference to standard ROBOLAB that works with 
interpreted code, Ultimate ROBOLABiv directly generates Assembly code from the graphical 
code, compiles it to Hitachi H8 byte codes which are then downloaded to the RCX. 
  
The algorithm has three important sections: the first one -universally known- consists in 
reducing the function f(x)=exp(x) to f0(x)=2x - respectively g(x)=ln(x) to g0(x)=log2(x) - the 
second section concerns the arrangement of the numbers in the particular way to have the 
CPU only compute f0(x) or g0(x) for x ∈ [1,2[ and the third manages a fast computing of f0(x) 
and g0(x) to any desired precision according to a look-up table composed of 22 numbers only 
for IEEE 754 standard single precision floating point numbers. During the execution of the 
elementary functions, in any case the CPU has to operate less than 22 products. The average 
case turns around 11 multiplications. 
 
Introduction 
 
The development of Ultimate ROBOLAB, a LabVIEW-based graphical compiler for Hitachi 
H8/300 code, is a particularly interesting demonstration of the typical constraints to which 
embedded design with micro-controllers may be submitted. Ultimate ROBOLAB is destined 
as a development tool for advanced users of the well-known LEGO RCX. This module had 
been invented as the central part of the LEGO Robotics Invention System (RIS), a highly 
sophisticated toy that, due to its excellent features, has found many applications as an 
educational tool in schools, high schools and even universities. 
 
The heart of the RCX is a 16MHz clocked Hitachi H8/3292 micro-controller. Besides 
peripheral devices and 16kB on-chip ROM and 512 bytes RAM, this micro-controller 
encapsulates an H8/300 CPU that has eight 16-bit registers r0..r7 or sixteen 8-bit registers 
r0H, r0L, … r7H, r7L (r7 is used as the stack-pointer); 16-bit program counter; 8-bit condition 
code register; register-register arithmetic and logic operations, of which 8 or 16-bit 
add/subtract (125ns at 16MHz), 8.8-bit multiplying (875ns), 16÷8-bit division (875ns); 
concise instruction set (lengths 2 or 4 bytes); 9 different addressing modes. Together with 32k 
external RAM, LCD-display, buttons, infrared communication module, analog sensor ports 
and H-bridge output ports, the RCX is an ideal instrument for the exploration of micro-
controllers in educational contexts. 



 
In order to attribute most flexibility to the RCX for all kind of robot projects, the 
programming environment Ultimate ROBOLAB required a firmware kernel that should 
guarantee memory economy and execution speed. Thus each part of the kernel had to be 
optimized to the limits, so that users could dispose of a maximum of memory for their own 
code and sufficient reaction speed for reliable robot behaviors and closed loop controls. This 
was particularly challenging concerning the inclusion of an advanced mathematical kernel 
that comprised IEEE 754 standard single precision floating-point operations, among which 
the square root, trigonometric and exponential functions. Scrutinizing the subject with the 
target to find algorithms that could best balance the requirements rapidly ended in the choice 
of Heron’s algorithm for the square root and CORDICv for the trigonometric functions. 
However the exponential functions revealed themselves as more difficult. 
 
1. Different methods of calculating y=exp(x) and y=ln(x) 
 
In order to dispose of valuable algorithms for the exponential function and its reciprocal, 
several existing methods have been evaluated. An alternative CORDICvi algorithm using a 
hyperbolic atanh table instead of the atan value list was the first possibility that we tested 
applying the equations: 
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But the implementation of this solution led to an excessively long and complex code, because 
of a necessary additional algorithm to assure the convergence. Another alternative was an 
application of Taylor’s series: 
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While being easily programmable, these series present the disadvantage of converging only 
very slowly, leading either to unacceptably long computing time or unsatisfying inaccuracy. 
 
Other high-speed alternatives known from FPGA or DSP implementations, and based on large 
constant tables had to be excluded as well. A remarkable representative of efficient table 
based algorithms was presented by DEFOUR et alvii, who succeeded in obtaining high 
precision function approximation with a multipartite method by performing 2 multiplications 
and adding 6 terms. The trade-off, and the reason for the disqualification in our application, is 
that the table size grows exponentially with the precision. For example, in order to get 23 
correct bits, corresponding to an error of ½ ulp (units in the last place) in the case of IEEE 
754 standard single precision floating-point data, the exp(x) function needs a table size of 
82432 constants. Obviously such a table would explode the RCX memory capacity. 
 
A better approximation choice was the use of a polynomial series based on error minimizing 
Chebycheffviii nodesix. For the purpose of y=2x, x∈[1,2[ , the applied function to determine 10 
Chebycheff-points is: 
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These nodes serve as reference-points for a 9th order polynomial curve fitting. While applying 
the Horner Schemex to the polynomial, the number of operations is a total of 9 multiplications 
and 9 additions per function call, compared to 7.2 + 1=15 multiplications and 9 additions for 
the straightforward polynomial calculation. 
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The accuracy that can be obtained with the algorithm is about 3E-7, as can be seen in the 
result of a LabVIEW simulation (picture 2).  
  

 
Picture 1: Operating the polynomial fit with LabVIEW 7.1 on the base of 10 Chebycheff nodes. 
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Picture 2: Absolute error of the previous polynomial approximation. (mse=0.33) 
 
A similarly efficient polynomial approximation could be set up for the log2(x) function in the 
special case of x∈[1,2[ . Of course satisfying algorithms must be added to extend the 
functions to the ranges ]-∞,+∞[ respectively ]0,+∞[ . 
 
The further investigation of the subject however led us to the algorithm that is described in 
this paper as a better solution for the purpose, combining memory economy and execution 
speed in the case of IEEE 754 standard single point precision floating-point representationxi. 
 
2. Calculation of f(x)=exp(x) 
 
2.1. Simplification to f0(x)=2x 

 

For any real x we have: 
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This equation signifies that any x must be multiplied with the constant c=1/ln(2) before 
computing the f0 function. 
 
Convention: we may suppose x>0, because of the trivial e0 =1 and e-x = 1/ex allowing an easy 
computation for any x.  
 
2.2. Arranging of f0(x)=2x

 
The IEEE standard floating point representation transports three information-parts about the 
concerned number: the sign, the biased exponent and the fractional part (=mantissa). 
 
Example: single precision representation 
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00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 
s  e  e  e  e  e  e  e  e  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m  m 
 

where : 
 
¾ if  e=255 and m<>0, then x = NaN (“Not a number”) 
¾ if e=255 and m=0, then x = (-1) s 

* ∞ 
¾ if 0<e<255 then x = (-1)s

*2(e-127) * (1.m)  with (1.m) representing the binary number 
created by preceding m with a leading 1 and the binary point 

¾ if e=0 and m<>0, then x = (-1)s
*2(-126) * (0.m) representing denormalized values 

¾ if e=0 and m=0 and s=1, then x = -0 
¾ if e=0 and m=0 and s=0, then x = 0 

 
The particular representation of the number 2.25 therefore is: 

1. s = 0 
2. e = 1 + 127 = 128 = b’10000000’ 
3. m = 0.125 = b’0010000 00000000 00000000’ 

 
Normalized mantissas always describe numbers belonging to the interval [1,2[ . 
  
Convention: unbiased exponent = q (integer) 
 
x = (-1)s

*2q * (1.m) 
 
Note: it is not possible to represent the number 0 in this form!  
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2.3 Study of f1(x = 1.m) = 21.m
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(formula 1) 

In any case we have: 2(x-1) ∈[1,2[, since 222lim =Π
∞→

i
i

i
 or simpler:  

m∈ [0,1[ ⇒ 2m∈[1,2[ 
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Thus the result 2(x-1) will always be normalized to the IEEE standard. 
 
To fast compute 2(x-1), we only need to first set up a look-up table with the constant values of 
successive square-roots of 2, then operate consecutive multiplying of a selection of those 
numbers while scanning the mantissa m of x. The table is filled with values that have been 
previously yielded by any iterative means with a precision <0.5 ulp. (For instance in a 
practical micro-controller application, the values can be produced by the cross-compiler host 
and stored as constants in the micro-controllers ROM, EEPROM or even as part of the 
program-code). Due to the limitation of accuracy of the single precision representation, the 
LUT only needs 22 different values. Thus the last bit won’t add any information as can be 
seen in the following example. (For better comprehension, we added the value 2 to the table at 
index 0.) 
 
Example: 
 
Compute y = 21.171875

 
Look-up table (LUT): 
 

index 
( )i−22  

0 2 
1 1.41421353816986084
2 1.18920707702636719 
3 1.09050774574279785 
4 1.0442737340927124 
5 1.02189719676971436 
6 1.010889176330566 
7 1.00542986392974853 
8 1.00271129608154297 
9 1.00135469436645508 

10 1.00067710876464844 
11 1.00033855438232422 
12 1.00016927719116211 
13 1.00008463859558105 
14 1.00004231929779053 
15 1.00002110004425049 
16 1.00001060962677002 
17 1.00000524520874023 
18 1.00000262260437012 
19 1.00000131130218506 
20 1.0000007152557373 
21 1.00000035762786865 
22 1.00000011920928955 

Æ   23 1,00000011920928955 
(b’0000000 00000000 00000001’ is the smallest mantissa that can be represented in IEEE 754 
single precision mode. The corresponding normalized number equals 1.0000001192… in 
decimal notation.) 
 
IEEE mantissa (1.171875) = b’0010110 00000000 00000000’ 
 
21.171875  = LUT(0) . LUT(3) . LUT(5) . LUT(6) 
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= 2 . 1.0905077 . 1.0218971  . 1.0108891 
= 2.2530429 (only considering the base-10 significant digits here) 

 
In practice, in order to maintain the result normalized during the whole computation, it is 
advantageous of operating the multiplication by 2 only at the end of the calculations simply 
by increasing the exponent. 
 
2.3.1. Accuracy and speed 
 
As a consequence of the theorem postulating that the error η of successive floating-point 
multiplications may be expressed as: 
 

( )
( )ulpn

ulpn
xxx n 121

12
...21 −−

−
≤

⋅⋅⋅

η
under the conditionxii that: 

maxmin xxx i ≤≤ and 

( )( )ulpncand
ulpn
ulpncwhere

cxxxxcx n

2212
)44(1
)22(1

...

1

2max211min

−−=
−−
−−

=

⋅≤⋅⋅⋅≤⋅
   

We can conclude that η won’t grow out of an acceptable range. In fact the maximum relative 
error can be theoretically estimated for n=22 as 5.6E-6 and for n=12 as 2.7E-6. Nonetheless, 
the LabVIEW simulation gives a better result of about 8E-7 in the worst case. The simulation 
also reveals a growing error in function of x. (Note that the simulation compared the square-
root algorithm with the current LabVIEW (v.7.1) y=2x function that has been applied to 
extended precision numbers.)  
 

 
Picture 3: A LabVIEW simulation reveals that the maximum absolute error may be considered as 8E-7. 
(mse=2.33) 
 
Compared to the Chebycheff polynomial approximation, there is a non-negligible loss of 
accuracy. Another trade-off is the fact that the number of multiplications depends on the 
number of significant bits, whereas the polynomial algorithm keeps the number of operations 
constant. This certainly is an issue, if higher precision representations are chosen. 
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The computational worst case would be to operate a product with m = b’1111111 11111111 
11111111’. This would require 22 multiplications (remember that the last bit may be ignored). 
 
Since the numbers 0 and 1 have the same probability to appear in m, the average case only 
requires 11 products. 
 
If we assume the empirical assertion that a floating-point multiplication needs about 5 times 
longer than an addition, the algorithm would be operated within the time of 11*5=55 
additions, while the polynomial approximation would need 9*5+9=50 additions. Thus the 
average computing speed may be considered as sensibly equal for both algorithms. 
  
However, a considerable speed gain can be obtained, if the algorithm is programmed at lowest 
level, where the access to the floating-point representation itself is possible. (This is 
practically required anyway, since the look-up-table items are selected on the mantissa bits!) 
One disadvantage of the polynomial algorithm is the fact that the multiplications produce un-
normalized results that need to be re-expanded and also aligned for the additions. With the 
square-root algorithm, such normalizing procedures are superfluous, since it is guaranteed that 
after each multiplication the result is normalized. Thus, calling a primitive floating-point 
multiplying function without the normalizing procedure can substantially accelerate the 
execution. 
 
Another possibility to reduce the computing time may be given, if less significant mantissa-
bits are being considered. Indeed, it might be useful in some cases to gain speed instead of 
accuracy. In this case, the gain, compared to the Chebycheff polynomial approach may be 
remarkable. 
 
2.4. The influence of the exponent q ≠ 0 
 
Normally mathematicians would consider the exp(x) and specially the 2x functions differently 
than presented in this document, when extending the domain of definition from [1,2[ to  
]-∞,+∞[ -or the portion of this interval that corresponds to the single precision representation. 
 
In fact they’d prefer writing: 
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At first sight, the operation looks like being very easy and fast, since only the f0 function must 
be executed and the result of that operation be multiplied by the rth power of two. The latter 
operation could be done simply and rapidly by increasing or decreasing the binary exponent 
by |r|. However there is a hook ! The issue is that the floor-function, representing the 
truncating of the floating point value, needs quite an impressive amount of execution steps, 
because it cannot be deduced by simple means from the IEEE 754 floating point 
representation. Therefore we propose a rather unorthodox approach that will end in a very 
reduced program code size. 
 
2.4.1. First case : q > 0 
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This equation doesn’t mean anything else but to compute successive squares of the 21.m value, 
each one representing a single multiplying. 
 
2x rapidly reaches the limit of the IEEE floating point representation as can be seen in the 
following series : 
           q :    1      2        3              4                  5                         6                         7  

( )q22  :    4    16    256    65536   4294967296     1.8446744E19    3.4028236E38 
 
For example: the largest number that can be represented in single precision is 
2127 . 1.999999 = 3.4E38. Thus the largest number x that can be computed to 2x is 
 
log2(2128) =128 ⇒ q = 7 
 
Example: 
 
Compute y = 29.375 

 
The IEEE single precision representation of this number gives: 
 
q = 3, 1.m=1.171875 
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Note that the relative error grows in a benign way with each multiplication, even if the 2nd 
condition of the cited theorem in 2.3.1. is no longer fulfilled. 
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2.4.2. Second case : q<0 
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Replacing 2(1.m) according to formula 1, we get: 
 

)(
3212 84 ...22222

q aaax −
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If q = -1, the equation may be rewritten:  ...22222 1684 321 ⋅⋅⋅⋅= aaax
 

If q = -2, it may be written as: ...22222 321684 321 ⋅⋅⋅⋅= aaax
 

 
a.s.o…. 
 
To compute the product for any q, we can operate a simple offset-shift in the look-up table 
only depending on the value of q. 
 
Example: 
 
Compute y = 20.146484375 

 
The IEEE single precision representation of this number gives: 
 
q = -3 and 1.m=1.171875 
 
y = LUT(0+3) . LUT(3+3) . LUT(5+3) . LUT(6+3) 
   = 1.0905077  . 1.0108891  . 1.0027112  . 1.0013546 
   = 1.1068685 
 
Note that ∀q<-22,  2x will be considered a 1. 
 
2.5. Practical implementation of the algorithm y=2x

 
Preliminary notes: For this sample the DELPHI language -former TURBO PASCAL- was 
chosen because of the better overview concerning stacked ifs and for loops, than known from 
C++, even if no such compiler seems to exist for micro-controllers. The bulk of this section is 
to most clearly present an astute and short implementation of the algorithm that can be easily 
traduced to any current language. For simplicity, the “NaN”, “infinity” and “denormalized” 
handlers have been omitted. However they should be added to a real implementation in order 

-10- 



-11- 

to keep everything standardized according to IEEE 754. Obviously the code is set up with 
respect to the single precision data representation. 
 
const MAX_ITERATIONS=22;              //reduce, if less precision and more 
var LUT: array [0..MAX_ITERATIONS] of single;    //computing speed is desired 
 
procedure initialize_LUT; //create LUT 
var index:integer; 
begin   //values 0 and MAX_ITERATIONS included in the for loop! 
  for index:=0 to MAX_ITERATIONS do LUT[index]:=power(2,power(2,(-index))); 
end; 
 
procedure expand_SGL(x:single;var exponent:integer; var signum:integer; 
   
var tmp:Cardinal;                     //temporary variable 

                   var mantissa:Cardinal);  //use var type to pass data 

    pI
begin 

EEE_754_raw: ^Cardinal;         //pointer to unsigned 32-bit variable 

  pIEEE_754_raw:=@x;                  //get address of x 
  if (pIEEE_754_raw^ and $80000000)=0 then signum:=0 else signum:=1; //0 :+  1:- 
  tmp:=pIEEE_754_raw^ and $7FFFFFFF;  //clear sign bit 
  exponent:=(tmp shr 23)-127;         //unbiased exponent 
  mantissa:=$80000000 or (tmp shl 8); //set hidden bit and shift rest 
end; 
 
function two_exp(x:single):single; 
var exponent,signum:integer; 
    mantissa,test:Cardinal; 
    offset,iterations,index,counter:integer; 
    te
begin 

mp:single; 

  expand_SGL(x,exponent,signum,mantissa);  //extract data 
  //special cases 
  if exponent<-MAX_ITERATIONS then         //values below precision 
  begin 
     result:=1                             //case 2^0.0000... = 1 
  end else 
  if exponent=-MAX_ITERATIONS then        //no multiplications are needed 
     begin                                //since the last item is chosen only 
        if signum=0 then result:=LUT[MAX_ITERATIONS] else 
                         result:=1/LUT[MAX_ITERATIONS] 
     end else 
     if exponent>7 then         //out of range 
        begin 
           if signum=0 then result:=1E99 else      //+infinity 
                            result:=+0             //+0 
        end else  
        begin 
          iterations:=MAX_ITERATIONS;          //initialize iterations 
          //normal cases 
          if exponent<0 then 
          begin 
            offset:=abs(exponent);             //get LUT offset 
            iterations:=iterations+exponent;   //less iterations are required //+= in C++ 
            index:=offset;                     //start LUT at offset 
            temp:=LUT[index]                   //initialize temporary variable 
          end else 
          begin   //exponent>=0 
            index:=0;                          //initialize index 
            temp:=1                            //initialize temp for products 
          end; 
 
          for unter:=1 to iterations do      //now iterate  co
          begin 
            index:=index+1;                    //increment index //+= operation in C++ 
            mantissa:=mantissa shl 1;          //left shift mantissa 
            test:=mantissa and $80000000;      //get most significant bit 
      //Å in Assembly language could use faster bit-test 
            if t<>0 then                    //check msb  tes
            begin 
              temp:=temp*LUT[index]; //Å could choose normalized multiplying here //*= in C++ 
            end; 
          end; 
          //now do the final multiplying, if exponent positive 
          if exponent>=0 then result:=2*temp else result:=temp; //Å could fast multiply by 2 
             //simply increase result’s 

     //binary exponent 
 



          if signum=1 then result:=1/result;   //negative value, so inverse 
 
          if ponent>0 then ex  
            for counter:=1 to exponent do      //now compute squares 
               result:=result*result;          //*= in C++   
        end; 
end; 

 
3. Study of the calculation of g(x)=ln(x) 
 
3.1. Simplification to g0(x)=log2(x) 
 
For any strictly positive real x we have: 
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3.2. Study of the function g1(x=1.m) = log2(1.m) 
 

xxidx == )(2 )(log2  
Calculating log2(x) may be considered as the inverse operation to doing 2y with: 
 
x = 2y 

 

Since we have x∈[1,2[ ⇒ y=log2(x) ∈ [0,1[ and: 
 

{ }1,0...,2222 84 321 ∈⋅⋅⋅= i
aaay a  

Note: From the IEEE standard point of view, y must be considered as partly “denormalized”, 
since the leading 1 must be missing before the binary point. 
 
Operating the following iterative tests may yield the set of elements ai: 
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Example: 
 
Compute y = log2(1.12652145) 
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⇒ m(y) = 001011 ⇒ y = 0 . 2-1 + 0 . 2-2 + 1 . 2-3 + 0 . 2-4 + 1 . 2-5 + 1 . 2-6   

  = 0.125 + 0.03125 + 0.015625 
  = 0.171875 

Instead of using divisions, that need a considerable computing time, it might be a good idea to 
additionally use a variant of the LUT, composed of the inverse values of the initial LUT. This 
procedure will allow doing only multiplications. The tests then have the following aspect: 
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Look-up table with the inverse values: 
 

index 
i2 2
1

 

1 0,70710676908493042 
2 0,840896427631278174 
3 0,917004048824310303 
4 0,957603275775909424 
5 0,978572070598602295 

Etc.  
 
3.3. Note for the practical implementation of the algorithm y=log2(x) 
 
Since the successive values of x and the LUT numbers that are used with the comparisons are 
always normalized, the comparisons can be fast computed. But this time the multiplications 
are operated with un-normalized numbers (2nd LUT). However, it is obvious that the 
multiplications always remain in the interval ]0,1[. A low level fast multiplying routine can be 
set up for these numbers, increasing the computing speed. Nonetheless the log2 algorithm 
implementation seems trivial and a sample code can be omitted in this document. 
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Conclusion 
 
This algorithm package may be helpful to implement fast calculations for the exp(x) and the 
ln(x) functions in the special case of  IEEE 754 standard single precision representation to any 
desired precision in the given range. 
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