
-1-

A simple and fast look-up table method to compute the exp(x) and ln(x) functions

Claude Baumann, Director of the Boarding School „Convict Episcopal de Luxembourgi“, 5
avenue Marie-Thérèse, m.b. 913, L-2019 Luxembourgii claude.baumann@education.lu

July 29th 2004

Abstract

Normally today’s computers shouldn’t present any problems to rapidly calculate
trigonometric or transcendental functions by any means. Developing better algorithms appears
to be more sporty than really practical. However the growing number of embedded
applications based on micro-controllers may ask for gain in speed and memory economy,
since those applications are fundamentally characterized by limited resources and optimized
designs in order to reduce costs. Thus, fast and memory economic algorithms keep playing an
important role in this domain.

The present algorithm was developed during the elaboration of Ultimate ROBOLAB, an
extension to the ROBOLAB softwareiii , known as a powerful graphical programming
environment for the LEGO RCX. By difference to standard ROBOLAB that works with
interpreted code, Ultimate ROBOLABiv directly generates Assembly code from the graphical
code, compiles it to Hitachi H8 byte codes which are then downloaded to the RCX.

The algorithm has three important sections: the first one -universally known- consists in
reducing the function f(x)=exp(x) to f0(x)=2x - respectively g(x)=ln(x) to g0(x)=log2(x) - the
second section concerns the arrangement of the numbers in the particular way to have the
CPU only compute f0(x) or g0(x) for x ∈ [1,2[and the third manages a fast computing of f0(x)
and g0(x) to any desired precision according to a look-up table composed of 22 numbers only
for IEEE 754 standard single precision floating point numbers. During the execution of the
elementary functions, in any case the CPU has to operate less than 22 products. The average
case turns around 11 multiplications.

Introduction

The development of Ultimate ROBOLAB, a LabVIEW-based graphical compiler for Hitachi
H8/300 code, is a particularly interesting demonstration of the typical constraints to which
embedded design with micro-controllers may be submitted. Ultimate ROBOLAB is destined
as a development tool for advanced users of the well-known LEGO RCX. This module had
been invented as the central part of the LEGO Robotics Invention System (RIS), a highly
sophisticated toy that, due to its excellent features, has found many applications as an
educational tool in schools, high schools and even universities.

The heart of the RCX is a 16MHz clocked Hitachi H8/3292 micro-controller. Besides
peripheral devices and 16kB on-chip ROM and 512 bytes RAM, this micro-controller
encapsulates an H8/300 CPU that has eight 16-bit registers r0..r7 or sixteen 8-bit registers
r0H, r0L, … r7H, r7L (r7 is used as the stack-pointer); 16-bit program counter; 8-bit condition
code register; register-register arithmetic and logic operations, of which 8 or 16-bit
add/subtract (125ns at 16MHz), 8.8-bit multiplying (875ns), 16÷8-bit division (875ns);
concise instruction set (lengths 2 or 4 bytes); 9 different addressing modes. Together with 32k
external RAM, LCD-display, buttons, infrared communication module, analog sensor ports
and H-bridge output ports, the RCX is an ideal instrument for the exploration of micro-
controllers in educational contexts.

In order to attribute most flexibility to the RCX for all kind of robot projects, the
programming environment Ultimate ROBOLAB required a firmware kernel that should
guarantee memory economy and execution speed. Thus each part of the kernel had to be
optimized to the limits, so that users could dispose of a maximum of memory for their own
code and sufficient reaction speed for reliable robot behaviors and closed loop controls. This
was particularly challenging concerning the inclusion of an advanced mathematical kernel
that comprised IEEE 754 standard single precision floating-point operations, among which
the square root, trigonometric and exponential functions. Scrutinizing the subject with the
target to find algorithms that could best balance the requirements rapidly ended in the choice
of Heron’s algorithm for the square root and CORDICv for the trigonometric functions.
However the exponential functions revealed themselves as more difficult.

1. Different methods of calculating y=exp(x) and y=ln(x)

In order to dispose of valuable algorithms for the exponential function and its reciprocal,
several existing methods have been evaluated. An alternative CORDICvi algorithm using a
hyperbolic atanh table instead of the atan value list was the first possibility that we tested
applying the equations:

)sinh()cosh()exp(
1
1tanh2)ln(

xxx
x
xax

+=

⎟
⎠
⎞

⎜
⎝
⎛

+
−

⋅=

But the implementation of this solution led to an excessively long and complex code, because
of a necessary additional algorithm to assure the convergence. Another alternative was an
application of Taylor’s series:

...
!

...
!4!3!2

1

11...
432

)1ln(

432

432

+++++++=

≤<−−+−+−=+

n
xxxxxe

xxxxxx

n
x

While being easily programmable, these series present the disadvantage of converging only
very slowly, leading either to unacceptably long computing time or unsatisfying inaccuracy.

Other high-speed alternatives known from FPGA or DSP implementations, and based on large
constant tables had to be excluded as well. A remarkable representative of efficient table
based algorithms was presented by DEFOUR et alvii, who succeeded in obtaining high
precision function approximation with a multipartite method by performing 2 multiplications
and adding 6 terms. The trade-off, and the reason for the disqualification in our application, is
that the table size grows exponentially with the precision. For example, in order to get 23
correct bits, corresponding to an error of ½ ulp (units in the last place) in the case of IEEE
754 standard single precision floating-point data, the exp(x) function needs a table size of
82432 constants. Obviously such a table would explode the RCX memory capacity.

A better approximation choice was the use of a polynomial series based on error minimizing
Chebycheffviii nodesix. For the purpose of y=2x, x∈[1,2[, the applied function to determine 10
Chebycheff-points is:

-2-

10,..,1,
10

5.0cos3
2
1

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ⋅
−

+⋅= iixi π

These nodes serve as reference-points for a 9th order polynomial curve fitting. While applying
the Horner Schemex to the polynomial, the number of operations is a total of 9 multiplications
and 9 additions per function call, compared to 7.2 + 1=15 multiplications and 9 additions for
the straightforward polynomial calculation.

()()()() SchemeHornerxaaxaxaxaxa
xaxaxaxaaxP

nn

n
n

,...3
...)(

1210

3
3

2
210

++++++=
+++++=

−

The accuracy that can be obtained with the algorithm is about 3E-7, as can be seen in the
result of a LabVIEW simulation (picture 2).

Picture 1: Operating the polynomial fit with LabVIEW 7.1 on the base of 10 Chebycheff nodes.

-3-

Picture 2: Absolute error of the previous polynomial approximation. (mse=0.33)

A similarly efficient polynomial approximation could be set up for the log2(x) function in the
special case of x∈[1,2[. Of course satisfying algorithms must be added to extend the
functions to the ranges]-∞,+∞[respectively]0,+∞[.

The further investigation of the subject however led us to the algorithm that is described in
this paper as a better solution for the purpose, combining memory economy and execution
speed in the case of IEEE 754 standard single point precision floating-point representationxi.

2. Calculation of f(x)=exp(x)

2.1. Simplification to f0(x)=2x

For any real x we have:

)2ln(

)2ln(
1

2

2

x

x

xe

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

This equation signifies that any x must be multiplied with the constant c=1/ln(2) before
computing the f0 function.

Convention: we may suppose x>0, because of the trivial e0 =1 and e-x = 1/ex allowing an easy
computation for any x.

2.2. Arranging of f0(x)=2x

The IEEE standard floating point representation transports three information-parts about the
concerned number: the sign, the biased exponent and the fractional part (=mantissa).

Example: single precision representation

-4-

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
s e e e e e e e e m

where :

¾ if e=255 and m<>0, then x = NaN (“Not a number”)
¾ if e=255 and m=0, then x = (-1) s

* ∞
¾ if 0<e<255 then x = (-1)s

*2(e-127) * (1.m) with (1.m) representing the binary number
created by preceding m with a leading 1 and the binary point

¾ if e=0 and m<>0, then x = (-1)s
*2(-126) * (0.m) representing denormalized values

¾ if e=0 and m=0 and s=1, then x = -0
¾ if e=0 and m=0 and s=0, then x = 0

The particular representation of the number 2.25 therefore is:

1. s = 0
2. e = 1 + 127 = 128 = b’10000000’
3. m = 0.125 = b’0010000 00000000 00000000’

Normalized mantissas always describe numbers belonging to the interval [1,2[.

Convention: unbiased exponent = q (integer)

x = (-1)s

*2q * (1.m)

Note: it is not possible to represent the number 0 in this form!

() ()()qq mmx

x
2.1).1(2 222

,0

==

>∀
⋅

2.3 Study of f1(x = 1.m) = 21.m

{ }

...125.025.05.01
1,0...,22221

321

3
3

2
2

1
1

0

+⋅+⋅+⋅+=
−=∈+⋅+⋅+⋅+⋅= −−−

aaa
moftionrepresentabitaaaax i

∏
=

⋅⋅⋅

+⋅+⋅+⋅+

⋅=

⋅⋅⋅⋅=

⋅⋅⋅⋅=

=

n

i

a

aaa

aaa

aaax

i
i

1

2

84

125.025.05.01

...)125.025.05.01(

22

...2222

...2222

22

321

321

321

(formula 1)

In any case we have: 2(x-1) ∈[1,2[, since 222lim =Π
∞→

i
i

i
 or simpler:

m∈ [0,1[⇒ 2m∈[1,2[

-5-

Thus the result 2(x-1) will always be normalized to the IEEE standard.

To fast compute 2(x-1), we only need to first set up a look-up table with the constant values of
successive square-roots of 2, then operate consecutive multiplying of a selection of those
numbers while scanning the mantissa m of x. The table is filled with values that have been
previously yielded by any iterative means with a precision <0.5 ulp. (For instance in a
practical micro-controller application, the values can be produced by the cross-compiler host
and stored as constants in the micro-controllers ROM, EEPROM or even as part of the
program-code). Due to the limitation of accuracy of the single precision representation, the
LUT only needs 22 different values. Thus the last bit won’t add any information as can be
seen in the following example. (For better comprehension, we added the value 2 to the table at
index 0.)

Example:

Compute y = 21.171875

Look-up table (LUT):

index
()i−22

0 2
1 1.41421353816986084
2 1.18920707702636719
3 1.09050774574279785
4 1.0442737340927124
5 1.02189719676971436
6 1.010889176330566
7 1.00542986392974853
8 1.00271129608154297
9 1.00135469436645508

10 1.00067710876464844
11 1.00033855438232422
12 1.00016927719116211
13 1.00008463859558105
14 1.00004231929779053
15 1.00002110004425049
16 1.00001060962677002
17 1.00000524520874023
18 1.00000262260437012
19 1.00000131130218506
20 1.0000007152557373
21 1.00000035762786865
22 1.00000011920928955

Æ 23 1,00000011920928955
(b’0000000 00000000 00000001’ is the smallest mantissa that can be represented in IEEE 754
single precision mode. The corresponding normalized number equals 1.0000001192… in
decimal notation.)

IEEE mantissa (1.171875) = b’0010110 00000000 00000000’

21.171875 = LUT(0) . LUT(3) . LUT(5) . LUT(6)

-6-

= 2 . 1.0905077 . 1.0218971 . 1.0108891
= 2.2530429 (only considering the base-10 significant digits here)

In practice, in order to maintain the result normalized during the whole computation, it is
advantageous of operating the multiplication by 2 only at the end of the calculations simply
by increasing the exponent.

2.3.1. Accuracy and speed

As a consequence of the theorem postulating that the error η of successive floating-point
multiplications may be expressed as:

()
()ulpn

ulpn
xxx n 121

12
...21 −−

−
≤

⋅⋅⋅

η
under the conditionxii that:

maxmin xxx i ≤≤ and

()()ulpncand
ulpn
ulpncwhere

cxxxxcx n

2212
)44(1
)22(1

...

1

2max211min

−−=
−−
−−

=

⋅≤⋅⋅⋅≤⋅

We can conclude that η won’t grow out of an acceptable range. In fact the maximum relative
error can be theoretically estimated for n=22 as 5.6E-6 and for n=12 as 2.7E-6. Nonetheless,
the LabVIEW simulation gives a better result of about 8E-7 in the worst case. The simulation
also reveals a growing error in function of x. (Note that the simulation compared the square-
root algorithm with the current LabVIEW (v.7.1) y=2x function that has been applied to
extended precision numbers.)

Picture 3: A LabVIEW simulation reveals that the maximum absolute error may be considered as 8E-7.
(mse=2.33)

Compared to the Chebycheff polynomial approximation, there is a non-negligible loss of
accuracy. Another trade-off is the fact that the number of multiplications depends on the
number of significant bits, whereas the polynomial algorithm keeps the number of operations
constant. This certainly is an issue, if higher precision representations are chosen.

-7-

The computational worst case would be to operate a product with m = b’1111111 11111111
11111111’. This would require 22 multiplications (remember that the last bit may be ignored).

Since the numbers 0 and 1 have the same probability to appear in m, the average case only
requires 11 products.

If we assume the empirical assertion that a floating-point multiplication needs about 5 times
longer than an addition, the algorithm would be operated within the time of 11*5=55
additions, while the polynomial approximation would need 9*5+9=50 additions. Thus the
average computing speed may be considered as sensibly equal for both algorithms.

However, a considerable speed gain can be obtained, if the algorithm is programmed at lowest
level, where the access to the floating-point representation itself is possible. (This is
practically required anyway, since the look-up-table items are selected on the mantissa bits!)
One disadvantage of the polynomial algorithm is the fact that the multiplications produce un-
normalized results that need to be re-expanded and also aligned for the additions. With the
square-root algorithm, such normalizing procedures are superfluous, since it is guaranteed that
after each multiplication the result is normalized. Thus, calling a primitive floating-point
multiplying function without the normalizing procedure can substantially accelerate the
execution.

Another possibility to reduce the computing time may be given, if less significant mantissa-
bits are being considered. Indeed, it might be useful in some cases to gain speed instead of
accuracy. In this case, the gain, compared to the Chebycheff polynomial approach may be
remarkable.

2.4. The influence of the exponent q ≠ 0

Normally mathematicians would consider the exp(x) and specially the 2x functions differently
than presented in this document, when extending the domain of definition from [1,2[to
]-∞,+∞[-or the portion of this interval that corresponds to the single precision representation.

In fact they’d prefer writing:

1)(
,2222,, .1.1

−=
⋅==∃∀ +

xfloorr
wherenumberrelativerrealx mrmrx

At first sight, the operation looks like being very easy and fast, since only the f0 function must
be executed and the result of that operation be multiplied by the rth power of two. The latter
operation could be done simply and rapidly by increasing or decreasing the binary exponent
by |r|. However there is a hook ! The issue is that the floor-function, representing the
truncating of the floating point value, needs quite an impressive amount of execution steps,
because it cannot be deduced by simple means from the IEEE 754 floating point
representation. Therefore we propose a rather unorthodox approach that will end in a very
reduced program code size.

2.4.1. First case : q > 0

-8-

()()

()()()

()()
()()() ...222.1

...222.1

2.1

.12

2

2

2

22

⎟
⎠
⎞⎜

⎝
⎛=

=

=

=

⋅⋅

⋅

m

m

m

mx

q

q

This equation doesn’t mean anything else but to compute successive squares of the 21.m value,
each one representing a single multiplying.

2x rapidly reaches the limit of the IEEE floating point representation as can be seen in the
following series :
 q : 1 2 3 4 5 6 7

()q22 : 4 16 256 65536 4294967296 1.8446744E19 3.4028236E38

For example: the largest number that can be represented in single precision is
2127 . 1.999999 = 3.4E38. Thus the largest number x that can be computed to 2x is

log2(2128) =128 ⇒ q = 7

Example:

Compute y = 29.375

The IEEE single precision representation of this number gives:

q = 3, 1.m=1.171875

()()

981852.663
2.2530429

2

8

222171875.1

=
=

⎟
⎠
⎞⎜

⎝
⎛=y

Note that the relative error grows in a benign way with each multiplication, even if the 2nd
condition of the cited theorem in 2.3.1. is no longer fulfilled.

-9-

2.4.2. Second case : q<0

()()

()()()

()()
()())(2 .1

.1

2.1

.12

2

2...

2

22

q

q

q

m

m

m

mx

−=

=

=

= ⋅

Replacing 2(1.m) according to formula 1, we get:

)(
3212 84 ...22222

q aaax −

⋅⋅⋅⋅=

If q = -1, the equation may be rewritten: ...22222 1684 321 ⋅⋅⋅⋅= aaax

If q = -2, it may be written as: ...22222 321684 321 ⋅⋅⋅⋅= aaax

a.s.o….

To compute the product for any q, we can operate a simple offset-shift in the look-up table
only depending on the value of q.

Example:

Compute y = 20.146484375

The IEEE single precision representation of this number gives:

q = -3 and 1.m=1.171875

y = LUT(0+3) . LUT(3+3) . LUT(5+3) . LUT(6+3)
 = 1.0905077 . 1.0108891 . 1.0027112 . 1.0013546
 = 1.1068685

Note that ∀q<-22, 2x will be considered a 1.

2.5. Practical implementation of the algorithm y=2x

Preliminary notes: For this sample the DELPHI language -former TURBO PASCAL- was
chosen because of the better overview concerning stacked ifs and for loops, than known from
C++, even if no such compiler seems to exist for micro-controllers. The bulk of this section is
to most clearly present an astute and short implementation of the algorithm that can be easily
traduced to any current language. For simplicity, the “NaN”, “infinity” and “denormalized”
handlers have been omitted. However they should be added to a real implementation in order

-10-

-11-

to keep everything standardized according to IEEE 754. Obviously the code is set up with
respect to the single precision data representation.

const MAX_ITERATIONS=22; //reduce, if less precision and more
var LUT: array [0..MAX_ITERATIONS] of single; //computing speed is desired

procedure initialize_LUT; //create LUT
var index:integer;
begin //values 0 and MAX_ITERATIONS included in the for loop!
 for index:=0 to MAX_ITERATIONS do LUT[index]:=power(2,power(2,(-index)));
end;

procedure expand_SGL(x:single;var exponent:integer; var signum:integer;

var tmp:Cardinal; //temporary variable

 var mantissa:Cardinal); //use var type to pass data

 pI
begin

EEE_754_raw: ^Cardinal; //pointer to unsigned 32-bit variable

 pIEEE_754_raw:=@x; //get address of x
 if (pIEEE_754_raw^ and $80000000)=0 then signum:=0 else signum:=1; //0 :+ 1:-
 tmp:=pIEEE_754_raw^ and $7FFFFFFF; //clear sign bit
 exponent:=(tmp shr 23)-127; //unbiased exponent
 mantissa:=$80000000 or (tmp shl 8); //set hidden bit and shift rest
end;

function two_exp(x:single):single;
var exponent,signum:integer;
 mantissa,test:Cardinal;
 offset,iterations,index,counter:integer;
 te
begin

mp:single;

 expand_SGL(x,exponent,signum,mantissa); //extract data
 //special cases
 if exponent<-MAX_ITERATIONS then //values below precision
 begin
 result:=1 //case 2^0.0000... = 1
 end else
 if exponent=-MAX_ITERATIONS then //no multiplications are needed
 begin //since the last item is chosen only
 if signum=0 then result:=LUT[MAX_ITERATIONS] else
 result:=1/LUT[MAX_ITERATIONS]
 end else
 if exponent>7 then //out of range
 begin
 if signum=0 then result:=1E99 else //+infinity
 result:=+0 //+0
 end else
 begin
 iterations:=MAX_ITERATIONS; //initialize iterations
 //normal cases
 if exponent<0 then
 begin
 offset:=abs(exponent); //get LUT offset
 iterations:=iterations+exponent; //less iterations are required //+= in C++
 index:=offset; //start LUT at offset
 temp:=LUT[index] //initialize temporary variable
 end else
 begin //exponent>=0
 index:=0; //initialize index
 temp:=1 //initialize temp for products
 end;

 for unter:=1 to iterations do //now iterate co
 begin
 index:=index+1; //increment index //+= operation in C++
 mantissa:=mantissa shl 1; //left shift mantissa
 test:=mantissa and $80000000; //get most significant bit
 //Å in Assembly language could use faster bit-test
 if t<>0 then //check msb tes
 begin
 temp:=temp*LUT[index]; //Å could choose normalized multiplying here //*= in C++
 end;
 end;
 //now do the final multiplying, if exponent positive
 if exponent>=0 then result:=2*temp else result:=temp; //Å could fast multiply by 2
 //simply increase result’s

 //binary exponent

 if signum=1 then result:=1/result; //negative value, so inverse

 if ponent>0 then ex
 for counter:=1 to exponent do //now compute squares
 result:=result*result; //*= in C++
 end;
end;

3. Study of the calculation of g(x)=ln(x)

3.1. Simplification to g0(x)=log2(x)

For any strictly positive real x we have:

)2ln()(log)ln(2 ⋅= xx

).1(log
).1(log)2(log

).1(log)2(log

)).1(2(log)(log

2

22

22

22

mq
mq

m

mx
q

q

+=
+⋅=

+=

⋅=

3.2. Study of the function g1(x=1.m) = log2(1.m)

xxidx ==)(2)(log2
Calculating log2(x) may be considered as the inverse operation to doing 2y with:

x = 2y

Since we have x∈[1,2[⇒ y=log2(x) ∈ [0,1[and:

{ }1,0...,2222 84 321 ∈⋅⋅⋅= i
aaay a

Note: From the IEEE standard point of view, y must be considered as partly “denormalized”,
since the leading 1 must be missing before the binary point.

Operating the following iterative tests may yield the set of elements ai:

....0;'''1;''1
2
'

0;'1;'1
2

22242

1111

====≥⎟
⎠

⎞
⎜
⎝

⎛ =

====≥⎟
⎠

⎞
⎜
⎝

⎛ =

axxelseatxthenxtif

axxelseatxthenxtif

Example:

Compute y = log2(1.12652145)

-12-

1)1(1
0108891.1
0108891.1

110108891.1
0218971.1
0330247.1

01
0442737.1
0330247.1

110330247.1
0905077.1
12652145.1

01
1892070.1
12652145.1

01
41421356.1
12652145.1

63

55

44

33

22

11

=⇒≥==

=⇒≥==

=⇒<=

=⇒≥==

=⇒<=

=⇒<=

at

at

at

at

at

at

⇒ m(y) = 001011 ⇒ y = 0 . 2-1 + 0 . 2-2 + 1 . 2-3 + 0 . 2-4 + 1 . 2-5 + 1 . 2-6

 = 0.125 + 0.03125 + 0.015625
 = 0.171875

Instead of using divisions, that need a considerable computing time, it might be a good idea to
additionally use a variant of the LUT, composed of the inverse values of the initial LUT. This
procedure will allow doing only multiplications. The tests then have the following aspect:

etcxxthenxif

xxthenxif

.....'
2

1''2'

.....
2

1'2

4
4 ⋅=≥

⋅=≥

Look-up table with the inverse values:

index
i2 2
1

1 0,70710676908493042
2 0,840896427631278174
3 0,917004048824310303
4 0,957603275775909424
5 0,978572070598602295

Etc.

3.3. Note for the practical implementation of the algorithm y=log2(x)

Since the successive values of x and the LUT numbers that are used with the comparisons are
always normalized, the comparisons can be fast computed. But this time the multiplications
are operated with un-normalized numbers (2nd LUT). However, it is obvious that the
multiplications always remain in the interval]0,1[. A low level fast multiplying routine can be
set up for these numbers, increasing the computing speed. Nonetheless the log2 algorithm
implementation seems trivial and a sample code can be omitted in this document.

-13-

-14-

Conclusion

This algorithm package may be helpful to implement fast calculations for the exp(x) and the
ln(x) functions in the special case of IEEE 754 standard single precision representation to any
desired precision in the given range.

i “Convict” doesn’t have the same meaning in French-spoken countries than in Anglo-Saxons. The term is
derived from the Latin “convivere” = living together.
ii Since 1999 the author teaches advanced LEGO robotics in after-school classes and maintains the related widely
known website www.convict.lu/Jeunes/RoboticsIntro.htm
iii ROBOLAB has been created by Prof. Chris Rogers and his team at Tufts University Massachusetts in
collaboration with the LEGO Company and National Instruments
iv Ultimate ROBOLAB has been developed by the author of this paper in collaboration with Prof. Chris Rogers
v VOLDER J.E. : CORDIC Trigonometric Computing Technique, IRE Transactions on Electronic Computers,
EC-8, Sept. 1959
vi TURNER P.R.: Guide to Numerical Analysis MacMillan UK, 1989 & Guide to Scientific Computing
MacMillan, 2000
vii DEFOUR D., DE DINECHIN F., MULLER J.M., A new scheme for table-based evaluation of functions,
Institut National de Recherche en Informatique et en Automatique, ISSN 0249-6399, 2002
viii ABRAMOWITZ M., STEGUN I.A., eds, Handbook of Mathematical Functions with Formulas, Graphs and
Mathematical Tables, Ch. 22. NY, 1972
ix PLATO R.: Numerische Mathematik, GE, 2004, p.10ff
x HORNER W.G.: A new method of solving numerical equations of all orders, by continuous approximation. In
Philosophical Transactions of the Royal Society of London, pp. 308-335, 1819
xi IEEE Computer Society (1985), IEEE Standard for Binary Floating-Point Arithmetic, IEEE Std 754, 1985
xii PLATO R.: Numerische Mathematik, GE, 2004, p.394ff

http://www.convict.lu/Jeunes/RoboticsIntro.htm

	A simple and fast look-up table method to compute the exp(x)
	Introduction

