
RFT : a simplified fast real-time sliding DFT algorithm

Claude Baumann, Director of the Boarding School “Convict Episcopal de Luxembourg1”, 5,
avenue Marie-Thérèse, m.b. 913, L-2019 Luxembourg2 claude.baumann@education.lu

September 15th 2005 (updated November 15th 2005)

Abstract

This paper presents a variant of the Discrete Fourier Transform (DFT)3 that is particularly
destined for the implementation in embedded applications, which are characterized by limited
resources in terms of memory and computing speed. Often these applications are highly
specialized and require therefore an optimal relationship between costs and performance. It
surely is of great interest to dispose of algorithms that may combine effectiveness, simplicity,
code-shortness and implementation ease. The presented table-based sliding algorithm has all
these qualities. As the name suggests, it executes the Fourier analysis on the single sample
rather than on an N-sized array of samples, drastically increasing the rate at which the Fourier
coefficients are produced in comparison to other DFT methods. This makes it an excellent
choice for real-time applications. The algorithm is based on a recursive interpretation of the
DFT equations. Furthermore, a look-up table with an astute indexing replaces the time-
intensive calls of trigonometric approximation functions. An optimal adaptation of the data
types guarantees highest precision and result stability.

1. Introduction

Probably the most frequently operated task in modern computers in any way is the Discrete
Fourier Transform (DFT). In signal processing the DFT is used to analyze discrete time
signals. Far from being trivial, the DFT is known to be quite complex both in program design
and execution. Of the numerous available algorithms the Cooley-Tukey Algorithm4 is the
most commonly used. To express the execution efficiency, the algorithm is called the Fast
Fourier Transform (FFT).

If N designates the number of samples that the FFT is supposed to take into consideration, the
complexity O(N) may be expressed with Nlog2N as the result of a divide an conquer strategy.
Compared to the complexity N2 of a non-optimized DFT, the gain is considerable. However
the disadvantage for real-time applications is the fact that the FFT must be applied to a whole
N-sized dataset, where N must be a power of 2. If no channel switching procedure is added,
the FFT coefficients are updated at a maximum speed of fa = fs/N, where fs is the sampling
frequency, regarded the supposition that the FFT computation has been achieved during 1/fa.5

By contrast, the present simplified sliding algorithm -that we’d like to call Real-time Fourier
Transform (RFT)- has the particularity that the computing speed does not depend on N, but
only on the number of required harmonics. (Remember that in the FFT both values cannot be
separated!) The high-speed analysis is operated after each data-sample and considers nothing
else but the differences that are generated through the disappearance of the oldest data-value
and the incoming of the most recent value, which means that it is not necessary to wait for N
values to be read. If the short computation is faster than the data acquisition time of the signal
processing device, fa will equal fs. Furthermore the algorithm avoids recalculating
trigonometric functions all over again, which is one of the principal sources of execution
slow-down. Instead the program fixes once at start N cosine and sine values into a constant
look-up table (LUT). Finally a considerable speed gain can be obtained, if the choice of the
data types is made carefully in function of N, since only a finite number of trigonometric

mailto:claude.baumann@education.lu

function-points are appearing. Of course this choice must also consider the initial signal
precision that might be given as an ADC resolution.

The RFT-algorithm is amazingly short and easy to implement into any kind of environment,
which makes it particularly interesting for embedded devices. The possible applications of the
algorithm are as numerous as for the FFT, but the gain may be significant for both the design
and the execution in real-time signal processing, especially if the number kmax of observed
harmonics is small. Additionally, the algorithm can easily be extended to include special data
windowing like Hanning-filtering destined to overcome problems that are linked to the
discontinuities at the edges of the observed data sets. However, with the RFT algorithm
windowing functions in the time domain cannot be applied. Instead corresponding low-pass
filter functions must be used in the frequency domain. If the algorithm was exploited as a non-
sliding DFT6, the complexity O(N) can be estimated to kmax

.N, representing a performance
that is comparable to the one delivered by the Goertzel algorithm7. If kmax< log2N, the
algorithm is even faster than the FFT.

2. Some DFT fundamentals

The DFT certainly is one of the workhorses in modern computing. Its principal activity may
be summarized as the description of periodicity in digital data. Especially used in digital
signal processing, it serves as a powerful signal-analyzer procedure extracting the harmonics
that compose the original signal. Basically, the DFT follows the theorem that any periodic
function fulfilling the Dirichlet-criteria8 may be expressed as an infinite summation of sinus
and cosines:

[]

∫

∫

∫

∑

=

=

=

++=
∞

=

π

π

π

π

π

π

2

0

2

0

2

0
0

1

0

sin)(1

cos)(1

)(1

sincos
2

)(

dxkxxgb

dxkxxga

dxxga

kxbkxaaxg

k

k

k
kk

The value a0/2 can be interpreted as the mean-value of all the windowed g(x)9. The values ak
and bk are called the coefficients of harmonics or Fourier-coefficients (sometimes ‘twiddle
factors’). In many cases a complex number representation of the Fourier series is preferable.
The ak values represent the real components and bk the imaginary parts. However, for the
description of the present algorithm the trigonometric representation is the better choice.

Signals generally are expressed as time-functions10. The coefficients are then described as:

[]

()

()dttktg
T

b

T
dttktg

T
a

dttg
T

a

tkbtkaatg

T

k

T

k

T
k

kk

ϖ

πϖϖ

ϖϖ

sin)(1

2,cos)(1

)(1

sincos
2

)(

0

0

0
0

1

0

∫

∫

∫

∑

=

==

=

++=
∞

=

In practical digital signal processing the time-domain data-values are obviously discrete and
the equations may be rewritten as finite summations rather than integrals:

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎟
⎠
⎞

⎜
⎝
⎛ ⋅

∆=

⎟
⎠
⎞

⎜
⎝
⎛ ⋅

∆=
⇔

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎟
⎠
⎞

⎜
⎝
⎛ ⋅∆=

⎟
⎠
⎞

⎜
⎝
⎛ ⋅∆=

⇒

∆
=

∆⋅∆=

∆⋅∆=

∆=

∆=∆=

∑

∑

∑

∑

∑

∑

∑

−

=

−

=
−

=

−

=

−

=

−

=

−

=

1

0

1

0
1

0

1

0

1

0

1

0

1

0
0

2sin
)(

2cos
)(

2sin)(1

2cos)(1

2

)sin()(1

)cos()(1

)(1
,

N

i
k

N

i
k

N

i
k

N

i
k

N

i
k

N

i
k

N

i

N
N

ki
tigb

N
N

ki
tiga

N
kitig

N
b

N
kitig

N
a

tN

tiktig
N

b

tiktig
N

a

tig
N

a

tittNT

π

π

π

π

πϖ

ϖ

ϖ

3. FIFO signal buffer with circular index

The RFT algorithm uses a simple windowing First In First Out (FIFO) data array that always
accepts N data values. Practically the buffer must initially be zeroed. A circular index-pointer
selects the current data-value. If a new data value is entered to the buffer-array, the old value
is overwritten and the index is incremented modulo N.

At any sampling time ti+uT = i∆t + uT, where i∈[0,N-1] and u∈[0,+∞[, both being integer-
values, let yi be the old data value that is going to disappear of the window with the arrival of
the new data value yi’. The formulas may be transformed as follows:

()

()

Nii
N

N
ki

yybb

N
N

ki
yyaa

iikk

iikk

mod)1(

2sin
''

2cos
''

+←

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎟
⎠
⎞

⎜
⎝
⎛ ⋅

−+=

⎟
⎠
⎞

⎜
⎝
⎛ ⋅

−+=

π

π

These recursive equations demonstrate that the Fourier coefficients may be computed at any
new sampling moment by only considering the difference of the recent and the old value
multiplied with the respective trigonometric functions. The most costly calculations obviously
are the sine and the cosine values. But it can easily be shown that during the circular
operations the same trigonometric values reappear over and over again.

The recursion that is employed in the present algorithm reminds other sliding DFT methods
that all are characterized by the fact that the transform is computed after each single sample
period instead of every N samples11.

4. Look-up table (LUT)

Normally in the FFT, k and i have the same dimension, which means that the result of the
FFT is an N dimensioned array, where the Fourier coefficients are reproduced twice. In the
RFT, this redundancy can be omitted by considering kmax = N/2. Choosing N as an even
number will prevent the loss of the last harmonic. The RFT algorithm allows restricting kmax
to any number ≤N/2, if less harmonics are likely to be observed, or even to a selection of
interest, if so desired. This leads to the conclusion that the set-dimension of those values from
which trigonometric functions are calculated is necessarily limited to N2/2. But, since the
functions are 2π-periodic, we have:

() ()

() ()
⎟
⎠
⎞

⎜
⎝
⎛ ⋅=⎟

⎠
⎞

⎜
⎝
⎛ ⋅

+=⎟
⎠
⎞

⎜
⎝
⎛ ⋅⇒

+=

∀

N
Nki

N
NkiNDIVki

N
ki

N
NkiNDIVki

N
ki

ki

ππππ 2)mod(sin2mod2sin2sin

mod
,

The trivial inequality kimodN < N proves that no more than N different sine values appear in
the computations. (Since k may equal 1 and i covers the range 0..N-1, there are in fact exactly
N values!) The same is true for the cosine values. Instead of operating the time-intensive
trigonometric calculations, it is therefore a better idea, to set up a N-sized look-up table (LUT)
containing the sine and cosine function values and have an index j= kimodN point to the
respective value. However:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅⎟
⎠
⎞

⎜
⎝
⎛ +=⎟

⎠
⎞

⎜
⎝
⎛ ⋅∀⇒

⎟
⎠
⎞

⎜
⎝
⎛ +=∀

N
Nki

N
kiki

xxx

ππ

π

2
4

sin2cos,

2
sincos,

If N is chosen as a multiple of 4, a second index q = [ki+(N div 4)] modN can be used to point
to the cosine, while j points to the sine, and only one LUT is required containing the sine
values alone. Since N is constant during the whole operation, the constant LUT can be set up
once at program start as follows:

{ }
{ }

N
N

i
iLUT

Ni
N

⎟
⎠
⎞

⎜
⎝
⎛ ⋅

=

−∈∀
∈∀

π2sin
)(

,1...3,2,1,0
......16,12,8,4

and the Fourier coefficients are expressed as:

{ }
{ }

()

()[]
()
()

() Nii
jLUTyybb
qLUTyyaa
NdivNjq

Nkij
ktokiterate

divNLUTyyaa
uTtperiodsamplingnextforwait

u
Ni

iikk

iikk

ii

i

mod1
)(''
)(''

mod4
mod

1:
)4(''

....3,2,1,0
1...3,2,1,0

max

00

+←

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−+=
−+=

+=
=

=
⋅−+=

+
∈∀

−∈∀

Thus, at any sampling moment ti+uT, only a very restricted number of computations must be
executed.

5. A simple implementation of the RFT in pseudo-code

|========================|
| constant definition: |
|========================|

integer: N //number of samples; multiple of 4
 COS_OFFSET = N DIV 4 //shifts by PI/2
 K_MAX //number of harmonics <=N/2

|========================|
| variable definition: |
|========================|

integer: i //index (samples)

 k //index (harmonics)
 j //index (points to the sine-value in the LUT
 q //index (points to the cosine-value in the LUT
 new_val, old_val, diff //temporary variables

array 0..N-1 of integer: f //ring-buffer for signal data
array 0..N-1 of real: LUT //look-up-table for sin(i*2*PI/N)/N
array 0..K_MAX of real: A //Re-coefficients
array 0..K_MAX of real: B //Im-coefficients; B[0] never used !

|========================|
| initialization |
|========================|

for i=0 to N-1 do

{
 LUT[i]:=SIN(i*2*PI/N)/N //initialize LUT

f[i]:=0 //zero data buffer
}

for k=0 to K_MAX do
{
 A[k]:=0 //zero coefficients
 B[k]:=0
}

i=0 //start with 0th data-value

|========================|
| RFT-algorithm |
|========================|

while TRUE do
{
 wait for time-event //timer ticks dt to produce regular
 //hard real-timing or timer interrupt

new_val:=get sample from signal channel
 old_val:=f[i] //the value that is going to disappear
 f[i]:=new_val //store current sample
 diff:=new_val-old_val //produce difference
 A[0]:=A[0]+diff*LUT[COS_OFFSET] //this divides by N !!!

 For k=1 to K_MAX do //do all the harmonic bins
 {
 j:=k*i MOD N //fix sine-index
 q:=(j+COS_OFFSET) MOD N //fix cosine-index
 A[k]:=A[k]+diff*LUT[q] //only add difference multiplied by
 B[k]:=B[k]+diff*LUT[j] //trig-functions
 }
 i:=(i+1) MOD N //next sample
}

|========================|
| End of program |
|========================|

6. Discontinuities

Any DFT encounters the fundamental problem of discontinuities. Suppose that an undesired
single discontinuity happens in the original signal. The FFT will return the disturbed set of
coefficients once, but in the presented RFT the twiddle factors will remain invalid for the
duration of the propagation of the discontinuity. Nonetheless the transform won’t be wrong
for a longer time than for the FFT. For both methods the invalid state will exactly last for 1/fb,
where fb is the FFT bin width and fb=fs/N.

Another type of discontinuity may be related to the windowing problem. The origin of the
difficulty is the fact that in most of the cases it cannot be assured that the signal windows,
which are selected for the DFT exactly match the signal periodicity. The result is a
misinterpretation of the periodic signal as if there was a regular discontinuity producing
spectral disturbances.

Picture 1: Illustration of the discontinuity that is generated by the DFT windowing.

A large palette of windowing functions has been developed to overcome these problems
(Hanning window, Hamming window, Bartlett window, Blackman, Kaiser, Welch, Dolph-
Chebychev…) Normally those functions are applied to the time domain data in order to
attenuate the signal at the edges of the window. Unfortunately with the RFT, the point of
discontinuity slides over the whole window as the result of the ring buffer. Therefore, the
windowing functions cannot be applied to the time domain data, but the filtering effect of the
windowing procedure must be operated to the frequency domain. The good news is that
because the RFT only considers half of the usual frequency interval, there is no doubling of
the harmonics as known from the FFT. The consequence is that chosen low-pass filters can
easily replace the rather complicated windowing functions. Since there exists an even larger
palette of applicable high-speed recursive or non-recursive digital filters, the RFT may assure
the same windowing features than the FFT with less effort.

However, simply enlarging the window size, defined by the number of data values N, can also
help solving the windowing problem. By this way, many of the spectral disturbances are
suppressed in the larger data pool. Remember that for the RFT the time to process the Fourier
coefficients is independent of the window size N. This means that enlarging the data sets does
not slow down the processing. Nonetheless, especially for embedded applications with limited
memory resources, the side effect is that a larger amount of memory is needed.

7. Optimizing the algorithm

The RFT needs a certain computer memory space. First of all there is the ring buffer that must
accept N signal data values. The LUT also requires N values. Finally the Fourier coefficients
arrays need N/2 locations each. Besides this room, several bytes must be reserved for the few
indices that are needed to run the algorithm. However this very limited space together with
the extreme code shortness are in no relation to the memory that must be engaged for the FFT,
since this particular algorithm is based on a divide and conquer strategy that is repeatedly
calling a parameterized recursive function to a certain depth. It must be noticed that the
impressive data size produced by recursive function calls are normally invisible to the
common user. But compilers must reserve the required memory for the activation record of
each call.

The RFT also has its trade-off. Because the processing must be executed within the small
sampling period, the execution speed of one frequency bin update should be optimized
according to the sampling period. On the other hand, it is also possible to reduce the number
of coefficients in order to improve the computing performance per single sample. Many
applications don’t even require the complete bin-set.

It is often underlined that recursive digital functions absolutely need theoretical “infinite” data
precision. In fact iterative and even more recursive operations keep the inherent risk of error
accumulation that can be the source of result instability. This is excessively hazardous when
working with usual floating-point representations. The well-known problem is that in the
floating-point representation numbers are not regularly spread over the data range. The
precision of a value X is a direct function of log2(X).12 All this necessarily concerns a
recursive DFT.

In order to guarantee result stability it must be made sure that the recursive operations don’t
introduce fundamental errors that can accumulate. One error-source is the possibility that the
following mathematically non-sense inequality might become true, due to floating-point
computing errors:

() ?)()(')(' jLUTyjLUTybjLUTyyb iikiik −+≠−+

which could result in the consequence that the value yiLUT(j) having been added to the bin at
ti doesn’t equal the theoretical identical value yiLUT(j) that is subtracted at ti+T just before
writing the new data-point!! It can be retained that the permanent discontinuity, generated by
the windowing problem, increases the probability that log2(y’i)≠log2(yi), which means that it is
probable that two numbers of different precisions are subtracted, introducing a small error at
each iteration. It cannot be predicted whether the errors compensate each other or are
accumulated over time. While programming the RFT algorithm the programmer must be
aware of this and search for remediation.

Picture 2: A simple illustration that visualizes that for certain values the distributive rule may not be true! This
may corrupt computing results, if the generated errors are accumulated over time. The origin of the troubles is
the fact that usual standard floating-point data types cannot represent all the values correctly and proceed to
irregular rounding or truncating.

The safest method to avoid these problems is to change to a fixed-point representation. This
perfectly makes sense, because, by contrast to the floating-point representation, the fixed-
point values, being nothing else but scaled integers, guarantee absolute precision, since a
regular repartition is realized over the data-range. If precautions have been taken of avoiding
overflow or division by zero, there is no risk that the fundamental arithmetic operations will
ever produce errors. Two major arguments support the switching to the scaled integer
representation:

¾ Signals are digitalized within finite resolutions
¾ Only a selection of trigonometric function-values appears in the RFT.

Since the sine and cosine values evolve in the interval [-1,1], they easily can be represented as
scaled integers in the LUT covering the range [-c, c] and respecting the guideline that any
consecutive scaled integer numbers must be unequal (bijection condition). This condition is
given if:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +⋅≠⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ +⋅

N
c

N
c ππππ 4

2
sinint2

2
sinint ,

where c is a constant that should be fixed at program start.

The LUT-values then are defined as:

{ }

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ⋅⋅=

−∈∀

N
iciLUT

Ni

π2sinint)(

,1...3,2,1,0

The Fourier coefficients must be computed differently, where only integer sums are used
recursively:

{ }
()
()

()[]

⎪
⎪
⎩

⎪⎪
⎨

⎧

⋅
=

⋅
=

=
+=

⎩
⎨
⎧

−+=
−+=

∈∀

Nc
S

b

Nc
S

a

Nkij
NdivNkiq

jLUTyySS
qLUTyySS

N

k

k

kk

kk

b
k

a
k

iibb

iiaa

'

'

''

'

'

'

mod
mod4

)('
)('

......16,12,8,4

A positive side effect of this approach is that the processing speed is drastically increased, as
floating-point normalizing and aligning procedures aren’t necessary anymore. The precision
doesn’t suffer at all, because the divisions don’t intervene in the recursions and, supposed that
the original signal has an m bit resolution, we have the following set of valid bijection rules:

() ()

()

4422431144332211

2121

2121

2121

2121

321321

1221

4321

1
421

11

)()(.13
,0.13
,0.12
,0.11

.10
.9

1.8
1.7

00.6
00.5

.4

.3
0.2

0.1
],,[,,,,
],2,....3,2,1,0[,,,
]2,2[

ldldddldldldldld
ldldddl
ldldddl

ldldlld
ldldlld

rangedlld
dldl
lldd

ldl
ldd

llllll
rangellll

ll
ll

ccLUTlllll
dddd

ccrangelet
m

mm

⋅+⋅<⋅+⋅⇒⋅<⋅∧⋅<⋅
⋅>⋅⇒<<∀
⋅<⋅⇒<>∀
⋅<⋅⇒<≠∀

⋅+⋅=+⋅
∈⋅=⋅
=⋅⇒=
=⋅⇒=
=⋅⇒=
=⋅⇒=

++=++
∈+=+

=−
=+

−⊂∈∀
∈∀

⋅⋅−=
−

−−

Note: Often the absolute magnitudes of the harmonics are not in the center of interest, but
rather the relative values. In these cases the time-costly divisions may be omitted.
8. Optimized code implementation

|========================|
| constant definition: |
|========================|

integer: N //number of samples; multiple of 4
 COS_OFFSET = N DIV 4 //shifts by PI/2
 K_MAX //number of harmonics <=N/2

|========================|
| variable definition: |
|========================|

integer: i //index (samples)

 k //index (harmonics)
 j //index (points to the sine-value in the LUT
 q //index (points to the cosine-value in the LUT
 c //LUT scale
 new_val, old_val, diff //temporary variables

array 0..N-1 of integer: f //ring-buffer for signal data
array 0..N-1 of integer: LUT //look-up-table for c*sin(i*2*PI/N)
array 0..K_MAX of real: A //Re-coefficients
array 0..K_MAX of real: B //Im-coefficients; B[0] never used !

array 0..K_MAX of integer: S_A //Re-sums
array 0..K_MAX of integer: S_B //Im-sums; S_B[0] never used !

|========================|
| initialization |
|========================|

function: determine c //required scaling factor; condition

//int(c*sin(PI/2+2*PI/N))<>int(c*sin(PI/2+4*PI/N))

inv_N:=1/N //this allows replacing division by multiplication
inv_c_N:=1/c/N //idem

for i=0 to N-1 do
{
 LUT[i]:=c*SIN(i*2*PI/N) //initialize LUT

f[i]:=0 //zero data buffer
}

for k=0 to K_MAX do
{
 S_A[k]:=0 //zero recursively used sums
 S_B[k]:=0
}

i=0 //start with 0th data-value

|========================|
| RFT-algorithm |
|========================|

while TRUE do
{

wait for time-event //timer ticks dt to produce regular
 //hard real-timing or timer interrupt
 new_val:=get sample from signal channel
 old_val:=f[i] //the value that is going to disappear
 f[i]:=new_val //store current sample
 diff:=new_val-old_val //produce difference
 S_A[0]:=S_A[0]+diff //integer only

 A[0]:=S_A[0]*inv_N //get the correct k0 coefficient
 j:=i //point to first sine-value in the LUT

 For k=1 to K_MAX do //do all the harmonic bins
 {
 q:=(j+COS_OFFSET) MOD N //fix cosine-index

S_A[k]:=S_A[k]+diff*LUT[q] //only add difference*trig
 S_B[k]:=S_B[k]+diff*LUT[j]

 A[k]:=S_A[k]*inv_c_N //re-scale
 B[k]:=S_B[k]*inv_c_N //two floating-point mult. per harmonic
 j:=(j+i)MOD N //produces j=k*i MOD N faster
 }
 i:=(i+1) MOD N //next sample
}

|========================|
| End of program |
|========================|

Note: Because normally compilers calculate the integer modulo function as part of the quite
costly integer division, a not insignificant gain of speed can be obtained by replacing the
index-incrementing followed by the MOD function with the function INCR_MOD below.

Function INCR_MOD(x,y,N:integer):integer //x<N and y<N !!!!

Temporary variables: tmp,delta:integer
{
 tmp:=y+x //increment y by x
 delta:=tmp-N //if tmp exceeds N, apply modulo
 If delta>=0 then result:=delta else result:=tmp
}

Code optimizing compilers also would prefer another instruction order, for the reason that
accesses to arrays are more costly than to numeric variables:

S_A[k]:=S_A[k]+diff*LUT[q]
 A[k]:=S_A[k]*inv_c_N

 S_B[k]:=S_B[k]+diff*LUT[j]

B[k]:=S_B[k]*inv_c_N

8. Practical performance test

In order to get an idea about the performance of the algorithm in a real environment, we tested
it with the LEGO RCX device. This module has been invented as a sophisticated toy, but,
since its release in 1998 it has found many applications as an educational tool in schools, high
schools and even universities. The heart of the RCX is a 16MHz clocked Hitachi H8/3292
micro-controller. This device combines many functions: 43 input/output ports (16 of which
can drive LEDs), 8 input-only ports, 8 ADC with a 10-bit resolution of which only 4 channels
are in use with the RCX (17µs acquisition time at 16MHz), serial communication interface,
watchdog-timer, 16-bit free-running timer, two 8-bit timers, 16kB ROM, 512B on-chip RAM.
The CPU has eight 16-bit registers r0..r7 or sixteen 8-bit registers r0H, r0L, … r7H, r7L (r7 is
used as the stack-pointer); 16-bit program counter; 8-bit condition code register (flag
register); register-register arithmetic and logic operations; 8 or 16-bit register-register
add/subtract (125ns at 16MHz); 8.8-bit multiplying needs 875 ns; 16÷8-bit division with
875ns; concise instruction set (lengths 2 or 4 bytes); MOV instruction for data transfer
between registers and memory (9 different addressing modes).

Picture 3: The RCX H8 micro-controller in its FP-64 package

Together with 32k external RAM, LCD-diplay, buttons, infrared communication module,
analog sensor ports and H-bridge output ports, the RCX is an ideal instrument for exploration
of micro-controllers in educational contexts. There exist various programming environments,
and also firmwares that unlock the device-features at different degrees. Our own development
tool called Ultimate ROBOLAB that is based on the graphical programming language
LabVIEW is a most powerful software-package that allows RCX programming at micro-
controller level. The graphical code is directly converted into compact machine code; each
program is an individual RCX firmware.

The optimized algorithm has been implemented with Ultimate ROBOLAB avoiding the final
floating-point rescaling. The computing time for one single sample-iteration was 3.94ms with
kmax=25 and 1.62ms with kmax=10. Replacing the modulo function with the INCR_MOD

function reduced the duration to 3.35ms with kmax=25, which represents a gain of 15.5%. Note
that a minimal system kernel needed to be run in order to dispose of the data acquisition
device. For various reasons the standard RCX sensor ports are sampled at about 300Hz. This
rate has been maintained in the standard Ultimate ROBOLAB configuration, but may be
increased to much higher values. Under standard conditions the RFT-update frequency is
able to reach the sampling rate if few harmonics only are observed. This practical verification
illustrates well, how efficiently the algorithm can be implemented in small micro-controller
environments.

9. Conclusion

The presented sliding real-time Fourier transform algorithm (RFT) is an ideal solution for
embedded applications, where limited resources in terms of processing speed, program
memory size and costs in general play a role. Besides this, the advantages compared to
commonly used FFT methods are that the Fourier coefficients are updated at a higher rate
than the usual bin width. Depending on the computing speed per sample, the analysis can
reach the maximum speed, which is the data sampling time itself. The simplicity of the
algorithm predestinates it for a use with other transform methods like the cosine-transform.

1 „Convict“ doesn’t have the same meaning in French-spoken countries than in Anglo-Saxons. The term is
derived from the Latin „convivere“ which roughly means „living together“.
2 Since 1999, besides his administrative tasks, the author teaches advanced LEGO Mindstorms robotics in after-
school classes (K6-K12) and maintains the related widely known website
www.convict.lu/Jeunes/RoboticsIntro.htm. He participates at the evaluation of the LabVIEW-based ROBOLAB
software that is originated from Tufts University Massachusetts in cooperation with the LEGO Company and
National Instruments. For instance he has been in charge -in collaboration with Prof. Chris Rogers, Tufts
University- of the realization of Ultimate ROBOLAB, a cross-compiler software that allows graphical
programming of the Hitachi H8 micro-controller and a few models of the Microchip PIC family. He has been the
assessor of various high school robot projects, author and co-author of several related articles and conferences.
In 2004, he has been keynote-speaker at the First Annual ROBOLAB Conference in Austin/TX.
3 KRÜGER K.E.: Transformationen, GE, 2002, pp.20
4 COOLEY, J.W. & J.W. TUKEY: An algorithm for the machine calculation of complex Fourier series. Math.
Of Computations, 19:297-301, 1965
5 fa is also equals the FFT bin width fb=fs/N.
6 Only a few minor changes must be added to the algorithm in order to obtain a non-sliding version!
7 an example : BEARD J.H., St.P.Given, B.J.Young: A discrete Fourier transform based digital DTMF detection
algorithm, Dep. of Electrical and Computer Engineering, Mississippi State University, 1995
8 DIRICHLET conditions: The function must have a finite number of discontinuities and a finite number of
extrema.

9 Often a0 is expressed differently as ∫=
π

π

2

0
0)(

2
1 dxxg

[]∑
∞

=

++=
1

0 sincos)(
k

kk kxbkxaaxg

a . In this case the Fourier series is written

as: . Also note that the observed interval may vary from author to

author. Sometimes [-π, π] is preferred to [0,2π].
10 Time intervals also differ from author to author. Sometimes [0,2T] is used, or [-T,T], or [-T/2,T/2]. Normally
there are only practical reasons for the various representation habitudes.
11 Also see CHICHARO Joe F., Mahdi T. KILANI: A sliding Goertzel Algorithm, p.283-297, Signal Processing,
Vol52, 1996, Elsevier
12 Excellent documentations to the problem may be found in: PLATO R.: Numerische Mathematik, 282-398,
Wiesbaden-GE, 2004 or GOLDBERG, D.: What ever computer scientists should know about floating-point
arithmetic. ACM Computer Surveys, 23:5-48, 1991

http://www.convict.lu/Jeunes/RoboticsIntro.htm

	RFT : a simplified fast real-time sliding DFT algorithm
	Abstract

